
CSCC01 Week 4 Notes
1

Agile Unified Process (AUP):

- I1, E1, C1, C2, Cn, T1, and T2 are just sprints.
- The agile phases are inception, elaboration, construction, transition.
- Table of the agile phases:

 Inception Elaboration Construction Transition

Description Is the phase where you
design your app.

Is the phase where
you take the design
and you construct the
CRC diagrams from it.

Is the phase where
you start
implementation and
do testing.

Is the phase
where you deploy
your code.

Model This is the stage where
you start designing
your app.

You take your design
from inception and you
make it more concrete
by using CRC cards or
other tools.

You might discover
details that you did
not catch in the
previous 2 phases,
but there should not
be much designing
in this stage.

There is very
little, if any,
designing at this
stage.

Implementation There is very little
implementation in this
phase. At most, you will
only install the
necessary software
and tools needed.

Here, you start thinking
about all the different
classes you need.

This is where you
do most of the
implementation.

There is very
little, if any,
coding at this
stage.

Test There is very little, if
any, testing at this
stage.

There is very little, if
any, testing at this
stage.

This is where you
do most of the
testing.

You can do some
testing at the
start of this stage.

Deployment There is very little, if
any, deployment at this
stage.

There is very little, if
any, deployment at this
stage.

Deployment may
start near the end of
this stage.

This is where you
deploy your code.

CSCC01 Week 4 Notes
2

Release Planning:
- During the release planning meeting the following things are established:

- Major release goals (What you’re aiming to deliver at the very end.)
- Release plan (What you’re going to do in each sprint. This doesn’t have to be

very detailed.)
- Potential sprint goals
- Completion date

- As each sprint progresses the burndown of story points measures the velocity of work,
which can be used to determine progress and adapt the plan as we go.

- Burndown charts show the progress of completing all of the committed points within a
single sprint on a day to day basis. That is, it starts off with total points in the sprint and
tracks them on a day to day basis.

- The burndown chart shows how many points are left at any point in time. Any issues
added after the start of the sprint will be added in the burndown chart as the scope
change.

- E.g. You start off with 30 points, it will be tracked at the top left corner of the chart and a
horizontal line would be sketched down to 0 across the chart.
If you complete a story with 5 points after 1 day, the total burndown would be 25 and it
would be reflected on the chart accordingly.

Sprint Planning:
- The stories with the highest priority from the product backlog items (PBI) are estimated.
- Stories are broken into tasks and tasks assigned to team members.
- Sprint planning meetings may include additional domain experts, who are not part of the

team, to help answer any questions and aid in time estimations.
- The Scrum Master helps identify constraints that might impact the team’s ability to

commit to the sprint goal.
- Implementation details are discussed here.
- The product owner must be available to answer any questions related to the design.

Story Points:
- We need a common way to compare story sizes.
- It can be hard to find common ground between a programming story and a database

management story.
- Story points are a relative measure of a feature’s size or complexity.

They are not durations nor a commitment to when a story will be completed.
Different teams have different velocities, so they may complete stories at different rates
depending on experience.

- A good tool to do the estimation is planning poker. It is a series similar to the Fibonacci
Series that can be a useful range for story points. Here, each number is almost the sum
of the two preceding numbers: 0, 1, 2, 3, 5, 8, 13, 20, 40, 100.

- 0-points estimates are used for trivial tasks that require little effort, though too many
zero-pointers can add up.

- Only use numbers within the set and avoid averages. We avoid averages because if a
user story turns out to be harder than expected, then the people who picked a higher
number will say “I told you” to the people who picked a lower number. The average does
not convince other people.

- What happens is this:
1. A feature is mentioned.
2. Each person in the team takes a number from the set, but doesn't show/tell

anyone else yet.
They choose the number based on how difficult they think implementing the

CSCC01 Week 4 Notes
3

feature will be.
A feature with point 0 means that it requires very little effort.

3. After 3 seconds, everyone shows their number.
4. If everyone or most people have the same number, it’s good.
5. If everyone or most people have different numbers, then each person has to

defend why they picked their number.
Once the discussion has been carried out, there is a second round of voting.

6. The process repeats until everyone agrees.
If people consistently do not agree with one another, then the user story is not a
good user story. This is because one of the features of a user story is that it must
be estimable. (Remember INVEST).

- Powers of 2 is also an effective tool to do the estimation.
Ideal Days:

- Another unit of measure. It can be used as a transition for teams that are new to agile.
- It represents an ideal day of work with no interruptions (phone calls, questions, broken

builds, etc.)
However, it doesn’t mean an actual day of work to finish.

- Tasks are estimated in hours.
An estimation is an ideal time (without interruptions/problems).
Smaller task estimates are more accurate than large.

- After all tasks have been estimated, the hours are totaled up and compared against the
remaining hours in the sprint backlog. If there is room, the PBI is added and the team
commits to completing the PBI.
If the new PBI overflows the sprint backlog, the team does not commit and

- the PBI can be returned to the product backlog and a smaller PBI chosen instead
or

- we can break the original PBI into smaller chunks or
- we can drop an item already in the backlog to make room or
- the product owner can help decide the best course of action.

Determining a Sprint Length:
- It is typically 2-4 weeks.
- Some factors to consider:

1. Frequency of customer feedback:
- How long can the stakeholders go without seeing progress/giving input.

2. Team’s level of experience:
3. Time overhead for planning and reviews:

- Review and planning require a good chunk of the day regardless of sprint
length.

4. Ability to plan the entire sprint:
- If there is uncertainty about how to achieve the sprint goal a shorter

duration is advisable.
5. Intensity of the team over the sprint:

- Avoid mini-crunch periods.
Tracking Progress:

- Information about progress, impediments and sprint backlog of tasks needs to be readily
available.

- How close a team is to achieving their goals is also important.
- Scrum employs a number of practices for tracking this information:

1. Task cards
2. Burndown charts
3. Task boards

CSCC01 Week 4 Notes
4

4. War rooms (standups)
Burndown Charts:

- Example of a burndown chart:

- Indicates how much work has been done in terms of how many user stories have been

completed and when.
- Burndown charts are on Jira.
- On the beginning of the sprint, on the vertical axis, is the number of user stories you’d

like to implement.
- At the end of the sprint, the number of user stories should be decreased to 0. That

means all the stories have been implemented.
- A burndown chart is a graphical representation of work left to do versus time. It is often

used in agile software development methodologies such as Scrum.
- Typically, in a burndown chart, the outstanding work is often on the vertical axis, with

time along the horizontal. It is useful for predicting when all of the work will be
completed.

Taskboard:
- Example of a taskboard:

- Both taskcards and taskboards are on Jira.

https://www.visual-paradigm.com/scrum/what-is-agile-software-development/

CSCC01 Week 4 Notes
5

- The leftmost column are the stories to be implemented and there are 3 columns
describing the progress of the tasks.

- In scrum the task board is a visual display of the progress of the scrum team during a
sprint. It presents a snapshot of the current sprint backlog allowing everyone to see
which tasks remain to be started, which are in progress and which are done.

- Simply put, the task board is a physical board on which the user stories which make up
the current sprint backlog, along with their constituent tasks, are displayed. Usually this
is done with index cards or post-it notes.

- The task board is usually divided into the columns listed below.
Stories: This column contains a list of all the user stories in the current sprint backlog.
Not started: This column contains sub tasks of the stories that work has not started on.
In progress: All the tasks on which work has already begun.
Done: All the tasks which have been completed.

Daily Scrum Meeting:
- It is a 15 minute meeting that everyone must attend.
- No sitting down, team stands in a circle and answers the following questions:

1. What have I done since the last meeting?
2. What am I going to accomplish between now and the next meeting?
3. What are the problems or impediments that are slowing me down?

- It is not for solving problems. The Scrum Master must ensure that all side conversations
are kept to a minimum. Solving problems happens throughout the rest of the day.

- It can be evolved to meet a specific team’s requirements, but the purpose must remain
the same (status, commitment, improvement).

Sprint Reviews:
- Occur on the last day of the sprint.
- The team and stakeholders come together to discuss the work accomplished.
- The product owner accepts or declines the results of the sprint.
- If a feature is declined, the owner will decide if it is returned to the backlog or simply

dropped.
- Honesty is crucial.
- Cannot discourage criticism simply because a lot of work was put in.

CRC:
- CRC cards are a technique/tool, used for high-level sketching of our Object-Oriented

architecture.
- We write information on index cards, using a few basic conventions.
- We include just enough details to allow us to "play out" scenarios (that are based on

User Stories).
- Layout of CRC cards:

CSCC01 Week 4 Notes
6

- Classes are the components of our system.
They include:

- Class/interface name
- Abstract/Interface indicator
- Super/parent class, and subclasses.

- Responsibilities are what each component does.
I.e. The class variables.
Traditionally, they are written as English sentences, but some people prefer to specify
them as method signatures.
Private methods of a component should not be included, as they are irrelevant to all
other components.

- Collaborators are the dependencies of a component.
I.e. The class methods

- Arguments for using CRC cards:
- Quickly sketch out an architecture, play out scenarios, and validate your design.
- Collaborative process that includes more team members in the design process.
- Communicate our design to less technical people, or to developers who are not

fluent in the programming language we are using.
- Arguments against using CRC cards:

- Takes just as long as coding interfaces and classes with empty implementations.
- Easier for developers to browse/search the info in their IDE, rather than using

index cards.
- The high-level nature of CRC cards means that some developers may interpret

them differently, and an additional architecture discussion will be necessary.
Cohesion vs Coupling:

- Cohesion refers to the degree to which the elements inside a module belong
together.

- High-cohesion means that each class takes care of one thing, and one thing only.
- Low cohesion implies that a given module performs tasks which are not very

related to each other and hence can create problems as the module becomes
large.

- Modules with high cohesion tend to be preferable, because high cohesion is
associated with several desirable traits of software including robustness,
reliability, reusability, and understandability. In contrast, low cohesion is
associated with undesirable traits such as being difficult to maintain, test, reuse,
or even understand.

- Think of building a physical robot. Many small parts (highly cohesive), versus a
few "mega parts" (low cohesion, monolithic).

- Coupling refers to the interdependencies between modules.
I.e. Components that are mutually dependent are also called coupled.

- A loosely coupled system is one in which each of its components has, or makes
use of, little or no knowledge of the definitions of other separate components.

- Tight coupling/tightly coupled is a type of coupling that describes a system in
which hardware and software are not only linked together, but are also
dependent upon each other.

- Loose coupling is important because it enables isolation.
- We want to keep the coupling low and the cohesion high.

- Good software design/architecture should include the following:
- Increases cohesion.
- Makes the system loosely coupled.
- Reduces dependencies.

CSCC01 Week 4 Notes
7

- Goals of good design are:
- Test different modules separately.
- Work on one component without affecting other components.
- Change implementations of different modules.
- Move our application to a better (suited) infrastructure.
- Easy to automate.
- Easy to reuse different components.

- The same principles of good software design/architecture are applied in different places
in the stack.

- For very small teams, who are trying to be agile, good design provides the highest "bang
for the buck".
Coordination is easy with a team of few responsible people.

- Good architecture guides developers. If the convenient way to implement something is
also the right way, you will end up with better code.

- In general, software systems model/simulate real world problems/domains.
- A model is made up of classes that represent the different pieces of the real world

problem.
DAO (Data Access Objects):

- The DAO is an object or interface that provides access to an underlying database or any
other persistence storage.
I.e. It is an object/interface, which is used to access data from a database or data
storage.

- We use DAO because it abstracts the retrieval of data from a data resource such as a
database. The concept is to separate a data resource's client interface from its data
access mechanism.

- The problem with accessing data directly is that the source of the data can change.
- They are utility classes used by other classes.
- They are usually long-lasting.

I.e. They are created when the application starts, and are there until the application
exits.

- They are usually expressed as interfaces, to make good modular design.
Epics:

- An epic is a large body of work that can be broken down into a number of smaller
stories.

- Epics are almost always delivered over a set of sprints.
- An epic can be defined as a big chunk of work that has one common objective. It could

be a feature, customer request or business requirement. In backlog, it is a placeholder
for a required feature with few lines of description. It tells compactly about final output of
user needs. In the beginning, it may not contain all the details that the team needs to
work on. These details are defined in user stories. An epic usually takes more than one
sprint to complete.

